Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
J Water Health ; 22(3): 601-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557574

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.


Assuntos
COVID-19 , Desinfetantes , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Ácido Hipocloroso/farmacologia , Água , Desinfetantes/farmacologia
2.
J Appl Oral Sci ; 32: e20230381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537031

RESUMO

BACKGROUND: Denture biofilm acts as a potential reservoir for respiratory pathogens, considerably increasing the risk of lung infections, specifically aspiration pneumonia, mainly 48h after hospital admission. The establishment of a straightforward, affordable, and applicable hygiene protocol in a hospital environment for the effective control of denture biofilm can be particularly useful to prevent respiratory infections or reduce the course of established lung disease. OBJECTIVES: To evaluate the anti-biofilm effectiveness of denture cleaning protocols in hospitalized patients. METHODOLOGY: The maxillary complete dentures (MCDs) of 340 hospitalized participants were randomly cleaned once using one of the following 17 protocols (n=20): brushing with distilled water, toothpaste, or neutral liquid soap (controls); immersion in chemical solutions (1% sodium hypochlorite, alkaline peroxide, 0.12% or 2% chlorhexidine digluconate), or microwave irradiation (650 W for 3 min) combined or not with brushing. Before and after the application of the protocols, the biofilm of the intaglio surface of the MCDs was evaluated using two methods: denture biofilm coverage area (%) and microbiological quantitative cultures on blood agar and Sabouraud Dextrose Agar (CFU/mL). Data were subjected to the Wilcoxon and Kruskal-Wallis tests (α=0.05). RESULTS: All 17 protocols significantly reduced the percentage area of denture biofilm and microbial and fungal load (P<0.05). The highest percentage reductions in the area of denture biofilm were observed for 1% hypochlorite solution with or without brushing and for 2% chlorhexidine solution and microwave irradiation only in association with brushing (P<0.05). The greatest reductions in microbial and fungal load were found for the groups that used solutions of 2% chlorhexidine and 1% hypochlorite and microwave irradiation, regardless of the association with brushing (P<0.05). CONCLUSIONS: A single immersion for 10 min in 1% sodium hypochlorite, even in the absence of brushing, proved to be a straightforward, rapid, low-cost, and effective protocol for cleaning the dentures of hospitalized patients.


Assuntos
Clorexidina , Hipoclorito de Sódio , Humanos , Ágar/farmacologia , Biofilmes , Clorexidina/farmacologia , Higienizadores de Dentadura/farmacologia , Prótese Total/microbiologia , Dentaduras/microbiologia , Ácido Hipocloroso/farmacologia , Hipoclorito de Sódio/farmacologia
3.
J Microorg Control ; 29(1): 39-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508761

RESUMO

During the disinfection of indoor spaces using gaseous hypochlorous acid (HOCl(g)), inhalation is the most common route of exposure for humans. In this study, an artificial human respiratory tract model was exposed to 12-140 ppb HOCl(g) at an aspiration flow rate of 800 mL/s for 15 h in a 1 m3 chamber. The respiratory tract model was equipped with 5th order bronchi and all gas-contact parts were made of silicone rubber with no other chlorine-consuming substances. The concentration of HOCl(g) reaching the lung pseudo-space was approximately 47.4% of the HOCl(g) concentrations in the chamber and was calculated to be very close to zero when the chamber concentration was less than 20.5 ppb. The disappearance of HOCl(g) during inhalation is likely due to the adsorption of HOCl(g) on the gas-contact silicone rubber surfaces. The cytotoxicity of HOCl(g) on respiratory epithelial cells was also examined using human air-liquid-interface airway tissue models. Human nasal epithelium and bronchiolar epithelium were exposed to 100 ppb and 500 ppb HOCl(g) for 8 h and 5 d, respectively. No significant effects of HOCl(g) on cell viability and ciliary activity were observed in any cell type, indicating that low concentrations of HOCl(g), less than 500 ppb, had no cytotoxic effect.


Assuntos
Gases , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacologia , Elastômeros de Silicone , Células Epiteliais , Pulmão
4.
J Clin Pediatr Dent ; 48(1): 144-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239167

RESUMO

This study evaluates the effect of the deproteinization agents hypochlorous acid and sodium hypochlorite upon the bonding of the two different pit and fissure sealant, self-adhesive flowable composites with the enamel. Thirty-six third molars were randomly divided into six different groups. The groups were formed as follows: Group 1: 37% phosphoric acid + VertiseTM Flow; Group 2: 200 ppm hypochlorous acid + 37% phosphoric acid VertiseTM Flow; Group 3: 5.25% sodium hypochlorite + 37% phosphoric acid + VertiseTM Flow; Group 4: 37% phosphoric acid + Constic; Group 5: 200 ppm hypochlorous acid + 37% phosphoric acid + Constic; Group 6: 5.25% sodium hypochlorite + 37% phosphoric acid + Constic. In each group, samples were obtained that were rectangular prisms in shape (n = 12). Groups to which a deproteinization agent was applied (Groups 2, 3 and 5, 6) showed statistically higher microtensile bonding strength than Group 1, Group 4. There was no statistically significant difference in terms of microtensile bonding strength values between the Groups 3 and the Group 6. The study found that the groups to which deproteinization agents were applied had statistically higher microtensile bonding strength values compared with those groups to which acid and fissure sealants were applied. In this study, it was concluded that the use of fissure-sealing self-adhesive flowable composites after acid application to permanent tooth enamel provides an acceptable bond strength given the limitations of in vitro studies. In line with the results obtained, it was observed that in addition to the removal of the inorganic structure with the application of acid, the removal of the organic structure with the use of deproteinization agent increased the bond strength to the enamel.


Assuntos
Colagem Dentária , Selantes de Fossas e Fissuras , Humanos , Selantes de Fossas e Fissuras/farmacologia , Ácido Hipocloroso/farmacologia , Cimentos de Resina/química , Cimentos de Resina/farmacologia , Hipoclorito de Sódio/farmacologia , Cimentos Dentários/farmacologia , Colagem Dentária/métodos , Ácidos Fosfóricos/farmacologia , Esmalte Dentário , Teste de Materiais , Propriedades de Superfície
5.
J Infect Chemother ; 30(2): 123-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37758000

RESUMO

INTRODUCTION: In daycare centers, infants come in close contact with each other, and contact, droplet, and mouth-to-mouth infections may occur owing to sharing of toys. Additional effective disinfection methods should be considered aside from wiping with disinfectants-including alcohol or sodium hypochlorite solution-for environmental disinfection of daycare centers. We aimed to examine the usefulness of hypochlorous acid water atomization in the effective disinfection of the classroom environment and toys at a nursery school. METHODS: Environmental cultures of the nursery and toys were prepared to evaluate the species and bacterial load and to assess the contaminated areas. Staphylococcus aureus petri dishes were placed at high-frequency contact sites, and hypochlorous acid water was atomized to achieve a 0.03-ppm atmospheric chlorine concentration. After the atomization, the amount of S. aureus bacteria on the Petri dish and the changes in bacterial count isolated from the environment and toys were evaluated. RESULTS: Hypochlorous acid water atomization was performed for 5 h to avoid condensation. After a 3-h atomization, ≥99.99% of S. aureus was eliminated on petri dishes; furthermore, a significant disinfection effect was observed on environmental bacteria at least 1 h after atomization. For rubber and textile toys, the significant disinfection effect was observed 1 h after atomization, and for plastic toys, the effect was observed 3 h after atomization. CONCLUSIONS: Hypochlorous acid water atomization is a useful strategy to disinfect nursery school classrooms.


Assuntos
Desinfetantes , Ácido Hipocloroso , Lactente , Humanos , Ácido Hipocloroso/farmacologia , Escolas Maternais , Staphylococcus aureus , Água , Desinfetantes/farmacologia , Bactérias , Antibacterianos/farmacologia , Etanol/farmacologia
6.
Biofouling ; 39(9-10): 980-989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018019

RESUMO

This study compared the cytotoxicity and antimicrobial activity of hypochlorous acid (HOCl) at 50 ppm and 200 ppm and 0.2% chlorhexidine (CHX) at various time intervals, in vitro. Cell viability and cytotoxicity of human gingival fibroblasts (HGF) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and the lactate dehydrogenase assay. Antimicrobial effects on Aggregatibacter actinomycetemcomitans and Candida albicans were determined using the time-kill method. All solutions exhibited a significant impact on HGFs in a dose- and time-dependent manner. 50 ppm HOCl demonstrated the highest cell viability, followed by 200 ppm HOCl. Both HOCl solutions were less cytotoxic to HGFs than 0.2% CHX. 50 ppm and 200 ppm HOCl demonstrated stronger efficiencies than CHX against A. actinomycetemcomitans and C. albicans. The data suggest that HOCl solutions have potential as an alternative antiseptic to CHX due to their lower cytotoxicity and superior antimicrobial activity, but optimal dosage of HOCl requires further investigations.


Assuntos
Anti-Infecciosos , Candida albicans , Humanos , Ácido Hipocloroso/farmacologia , Aggregatibacter actinomycetemcomitans , Biofilmes , Clorexidina/farmacologia , Fibroblastos
7.
J Physiol ; 601(23): 5257-5275, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864413

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+ -handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild-type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 µM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 µM) on maximal force in slow-twitch soleus were lower than found in the fast-twitch EDL muscle. In single interosseous myofibres, HOCl (10 µM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl-induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. KEY POINTS: Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild-type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Ácido Hipocloroso/farmacologia , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/uso terapêutico , Peroxidase/metabolismo , Camundongos Endogâmicos mdx , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
8.
J Bacteriol ; 205(10): e0006423, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37791752

RESUMO

To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Ácido Hipocloroso/farmacologia , Escherichia coli Uropatogênica/metabolismo , Cloro , Infecções Urinárias/microbiologia , Oxidantes/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia
9.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667489

RESUMO

AIMS: As antimicrobial resistance is on the rise, treating chronic wound infections is becoming more complex. The presence of biofilms in wound beds contributes to this challenge. Here, the activity of a novel hypochlorous acid (HOCl) producing electrochemical bandage (e-bandage) against monospecies and dual-species bacterial biofilms formed by bacteria commonly found in wound infections was assessed. METHODS AND RESULTS: The system was controlled by a wearable potentiostat powered by a 3V lithium-ion battery and maintaining a constant voltage of + 1.5V Ag/AgCl, allowing continuous generation of HOCl. A total of 19 monospecies and 10 dual-species bacterial biofilms grown on polycarbonate membranes placed on tryptic soy agar (TSA) plates were used as wound biofilm models, with HOCl producing e-bandages placed over the biofilms. Viable cell counts were quantified after e-bandages were continuously polarized for 2, 4, 6, and 12 hours. Time-dependent reductions in colony forming units (CFUs) were observed for all studied isolates. After 12 hours, average CFU reductions of 7.75 ± 1.37 and 7.74 ± 0.60 log10 CFU/cm2 were observed for monospecies and dual-species biofilms, respectively. CONCLUSIONS: HOCl producing e-bandages reduce viable cell counts of in vitro monospecies and dual-species bacterial biofilms in a time-dependent manner in vitro. After 12 hours, >99.999% reduction in cell viability was observed for both monospecies and dual-species biofilms.


Assuntos
Ácido Hipocloroso , Infecção dos Ferimentos , Humanos , Ácido Hipocloroso/farmacologia , Bactérias , Bandagens , Biofilmes
10.
Free Radic Biol Med ; 208: 211-220, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544488

RESUMO

NieR is a TetR family transcriptional repressor previously shown to regulate the NaOCl-inducible efflux pump NieAB in Agrobacterium tumefaciens. NieR is an ortholog of Escherichia coli NemR that specifically senses hypochlorite through the redox switch of a reversible sulfenamide bond between C106 and K175. The amino acid sequence of NieR contains only one cysteine. NieR has C104 and R166, which correspond to C106 and K175 of NemR, respectively. The aim of this study was to investigate the redox-sensing mechanism of NieR under NaOCl stress. C104 and R166 were subjected to mutagenesis to determine their roles. Although the substitution of R166 by alanine slightly reduced its DNA-binding activity, NieR retained its repressor function. By contrast, the DNA-binding and repression activities of NieR were completely lost when C104 was replaced by alanine. C104 substitution with serine only partially impaired the repressor function. Mass spectrometry analysis revealed an intermolecular disulfide bond between the C104 residues of NieR monomers. This study demonstrates the engagement of C104 in the mechanism of NaOCl sensing. C104 oxidation induced the formation of a disulfide-linked dimer that was likely to alter conformation, thus abolishing the DNA-binding ability of NieR and derepressing the target genes.


Assuntos
Ácido Hipocloroso , Compostos de Sulfidrila , Ácido Hipocloroso/farmacologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredução , Cisteína/metabolismo , Escherichia coli/genética , Dissulfetos/metabolismo , Alanina/metabolismo , DNA/metabolismo
11.
Vascul Pharmacol ; 152: 107199, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500030

RESUMO

BACKGROUND AND AIMS: Myeloperoxidase (MPO) and its principal reaction product hypochlorous acid (HOCl) are part of the innate immune response but are also associated with endothelial dysfunction, thought to involve a reduction in nitric oxide (NO) bioavailability. We aimed to investigate the effect of MPO and HOCl on vasorelaxation of coronary arteries and to assess directly the involvement of NO. In addition, we hypothesised that the slow release hydrogen sulfide (H2S) donor GYY4137 would salvage coronary artery endothelial function in the presence of MPO and HOCl. METHODS AND RESULTS: Contractility of porcine coronary artery segments was measured using isometric tension recording. Incubation with MPO (50 ng/ml) plus hydrogen peroxide (H2O2) (30 µM; substrate for MPO) impaired endothelium-dependent vasorelaxation to bradykinin in coronary arteries. HOCl (10-500 µM) also impaired endothelium-dependent relaxations. There was no effect of MPO plus H2O2, or HOCl, on endothelium-independent relaxations to 5'-N-ethylcarboxamidoadenosine and sodium nitroprusside. L-NAME (300 µM), a NO synthase inhibitor, attenuated bradykinin relaxations, leaving L-NAME-resistant relaxations to bradykinin mediated by endothelium-dependent hyperpolarization. In the presence of L-NAME, MPO plus H2O2 largely failed to impair endothelium-dependent relaxations to bradykinin. Similarly, HOCl failed to inhibit endothelium-dependent relaxations to bradykinin in the presence of L-NAME. GYY4137 (1-100 µM) protected endothelium-dependent relaxations to bradykinin from dysfunction caused by MPO plus H2O2, and HOCl, with no effect alone on bradykinin relaxation responses. The specific MPO inhibitor aminobenzoic acid hydrazide (ABAH) (1 and 10 µM) also protected against MPO plus H2O2-induced endothelial dysfunction (at 10 µM ABAH), but was less potent than GYY4137. CONCLUSIONS: MPO plus H2O2, and HOCl, impair coronary artery endothelium-dependent vasorelaxation via inhibition of NO. GYY4137 protects against endothelial dysfunction in arteries exposed to MPO plus H2O2, and HOCl. H2S donors such as GYY4137 are possible therapeutic options to control excessive MPO activity in cardiovascular diseases.


Assuntos
Vasos Coronários , Sulfeto de Hidrogênio , Animais , Suínos , Ácido Hipocloroso/farmacologia , Sulfeto de Hidrogênio/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Bradicinina/farmacologia , Peroxidase/farmacologia , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico , Endotélio Vascular
12.
Aust Endod J ; 49(3): 503-511, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37403810

RESUMO

This study assessed the antimicrobial effect of sodium hypochlorite (NaOCl) mixtures combined with Keratobacter (KB) using an engineered biofilm root canal model. Clinical and reagent grade NaOCl were mixed with KB (9:1-vol/vol) to assess pH values over 1 min to select the ideal solution with a pH just below the pKa of hypochlorous acid. The samples were randomly divided into five groups: 1% and 4% NaOCl reagents, a mixture of NaOCl:KB using 1% and 4% NaOCl reagents and distilled water. Outcome measures were colony-forming units (CFUs/mL) and positive/negative cultures. No significant differences were observed in the pairwise comparisons between 1%, 4% NaOCl and 4% NaOCl+KB for the outcome CFUs/mL. Only 4% NaOCl presented with negative cultures in all samples, whereas 1% NaOCl and 4% NaOCl+KB had similar results (54% vs. 40%). The addition of KB has a limited effect on the antimicrobial efficacy of 4% NaOCl in this laboratory model.


Assuntos
Anti-Infecciosos , Hipoclorito de Sódio , Hipoclorito de Sódio/farmacologia , Ácido Glicocólico/farmacologia , Anti-Infecciosos/farmacologia , Ácido Hipocloroso/farmacologia , Biofilmes , Irrigantes do Canal Radicular/farmacologia , Cavidade Pulpar , Enterococcus faecalis , Preparo de Canal Radicular/métodos
13.
Wound Repair Regen ; 31(3): 401-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36951216

RESUMO

Our objective was to assess the efficacy of two successive applications of hypochlorous acid, first as a liquid and then as a gel because liquid hypochlorous acid is effective but has little residual effect, while the gel form has more residual power, and compare it with that of other products. An experimental non-randomised study was carried out, treating 346 chronic ulcers in 220 patients. The antiseptic treatment has been divided into 'hypochlorous acid' (Clortech), 'hypochlorous acid liquid + gel' (Clortech + Microdacyn60R -hydrogel) and 'Others' (Prontosan or Chlorhexidine or Microdacyn60R -hydrogel). Bivariate and multivariate studies analysed the characteristics of the patients and their ulcers, including size, symptoms, signs, treatments received and their duration, and so on. The ulcers were complicated, of long evolution, and most had a vascular origin. On average, antiseptic treatment lasted 14 weeks. At the time of their discharge, or last treatment in the clinics, 59% of the ulcers had healed completely, 9.5% worsened, and 6.9% had become infected during this period. In the bivariate and multivariate studies, we took as reference the 'others' treatments that showed no significant differences in healing time or infection rates compared with liquid hypochlorous acid 100-500 mg/L alone. However, hypochlorous acid liquid + gel showed a synergistic effect, with a higher probability of achieving complete healing (four times) and a lower probability of infection (a fifth), compared to the 'other' antiseptics. In conclusion, a synergistic effect was found with the successive application of hypochlorous acid in liquid followed by gel, an effect that increased healing probability and decreased the risk of the ulcer becoming infected.


Assuntos
Anti-Infecciosos Locais , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacologia , Úlcera , Cicatrização , Anti-Infecciosos Locais/farmacologia , Hidrogéis/farmacologia
14.
Aust Endod J ; 49 Suppl 1: 366-373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36960971

RESUMO

This study evaluated the effect of propolis as an antioxidant agent on bond strength to enamel after intracoronal bleaching. A total of 160 incisors were endodontically treated. Sixteen teeth were served as control, and the remaining teeth were randomly divided into three main groups according to the bleaching agent used; group 1: Sodium perborate (SP); group 2: Carbamide peroxide (CP); group 3: Hydrogen peroxide (HP). After bleaching, the samples were divided into three subgroups; subgroup A: no antioxidant agent application, subgroup B: sodium ascorbate (SA), subgroup C: propolis (PP). After the antioxidant agents application, the sample's surfaces were washed and dried. After adhesive application, composite resin cylinders were applied to enamel surfaces using tygon tubes and a shear bond strength test was performed. The use of PP significantly decreased the bond strength of composite resin to the enamel (p < 0.05). Using propolis as an antioxidant agent adversely affects the bond strength to enamel after intracoronal bleaching.


Assuntos
Clareadores , Colagem Dentária , Própole , Clareamento Dental , Resinas Compostas/química , Resinas Compostas/farmacologia , Peróxidos/farmacologia , Ureia/farmacologia , Própole/farmacologia , Clareadores/farmacologia , Clareamento Dental/efeitos adversos , Antioxidantes/farmacologia , Esmalte Dentário , Ácido Hipocloroso/farmacologia , Resistência ao Cisalhamento
15.
BMC Microbiol ; 23(1): 59, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879193

RESUMO

BACKGROUND: Clostridioides difficile is a spore forming bacterial species and the major causative agent of nosocomial gastrointestinal infections. C. difficile spores are highly resilient to disinfection methods and to prevent infection, common cleaning protocols use sodium hypochlorite solutions to decontaminate hospital surfaces and equipment. However, there is a balance between minimising the use of harmful chemicals to the environment and patients as well as the need to eliminate spores, which can have varying resistance properties between strains. In this work, we employ TEM imaging and Raman spectroscopy to analyse changes in spore physiology in response to sodium hypochlorite. We characterize different C. difficile clinical isolates and assess the chemical's impact on spores' biochemical composition. Changes in the biochemical composition can, in turn, change spores' vibrational spectroscopic fingerprints, which can impact the possibility of detecting spores in a hospital using Raman based methods. RESULTS: We found that the isolates show significantly different susceptibility to hypochlorite, with the R20291 strain, in particular, showing less than 1 log reduction in viability for a 0.5% hypochlorite treatment, far below typically reported values for C. difficile. While TEM and Raman spectra analysis of hypochlorite-treated spores revealed that some hypochlorite-exposed spores remained intact and not distinguishable from controls, most spores showed structural changes. These changes were prominent in B. thuringiensis spores than C. difficile spores. CONCLUSION: This study highlights the ability of certain C. difficile spores to survive practical disinfection exposure and the related changes in spore Raman spectra that can be seen after exposure. These findings are important to consider when designing practical disinfection protocols and vibrational-based detection methods to avoid a false-positive response when screening decontaminated areas.


Assuntos
Clostridioides difficile , Infecção Hospitalar , Humanos , Hipoclorito de Sódio/farmacologia , Ácido Hipocloroso/farmacologia , Desinfecção , Esporos Bacterianos , Infecção Hospitalar/prevenção & controle
16.
BMC Oral Health ; 23(1): 111, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36803460

RESUMO

BACKGROUND: Droplets and aerosols produced during dental procedures are a risk factor for microbial and viral transmission. Unlike sodium hypochlorite, hypochlorous acid (HOCl) is nontoxic to tissues but still exhibits broad microbicidal effect. HOCl solution may be applicable as a supplement to water and/or mouthwash. This study aims to evaluate the effectiveness of HOCl solution on common human oral pathogens and a SARS-CoV-2 surrogate MHV A59 virus, considering the dental practice environment. METHODS: HOCl was generated by electrolysis of 3% hydrochloric acid. The effect of HOCl on human oral pathogens, Fusobacterium nucleatum, Prevotella intermedia, Streptococcus intermedius, Parvimonas micra, and MHV A59 virus was studied from four perspectives: concentration; volume; presence of saliva; and storage. HOCl solution in different conditions was utilized in bactericidal and virucidal assays, and the minimum inhibitory volume ratio that is required to completely inhibit the pathogens was determined. RESULTS: In the absence of saliva, the minimum inhibitory volume ratio of freshly prepared HOCl solution (45-60 ppm) was 4:1 for bacterial suspensions and 6:1 for viral suspensions. The presence of saliva increased the minimum inhibitory volume ratio to 8:1 and 7:1 for bacteria and viruses, respectively. Applying a higher concentration of HOCl solution (220 or 330 ppm) did not lead to a significant decrease in the minimum inhibitory volume ratio against S. intermedius and P. micra. The minimum inhibitory volume ratio increases in applications of HOCl solution via the dental unit water line. One week of storage of HOCl solution degraded HOCl and increased the minimum growth inhibition volume ratio. CONCLUSIONS: HOCl solution (45-60 ppm) is still effective against oral pathogens and SAR-CoV-2 surrogate viruses even in the presence of saliva and after passing through the dental unit water line. This study indicates that the HOCl solution can be used as therapeutic water or mouthwash and may ultimately reduce the risk of airborne infection in dental practice.


Assuntos
COVID-19 , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacologia , SARS-CoV-2 , Antissépticos Bucais/farmacologia , Aerossóis e Gotículas Respiratórios , Bactérias
17.
Immunol Rev ; 314(1): 181-196, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609987

RESUMO

The burst of superoxide produced when neutrophils phagocytose bacteria is the defining biochemical feature of these abundant immune cells. But 50 years since this discovery, the vital role superoxide plays in host defense has yet to be defined. Superoxide is neither bactericidal nor is it just a source of hydrogen peroxide. This simple free radical does, however, have remarkable chemical dexterity. Depending on its environment and reaction partners, superoxide can act as an oxidant, a reductant, a nucleophile, or an enzyme substrate. We outline the evidence that inside phagosomes where neutrophils trap, kill, and digest bacteria, superoxide will react preferentially with the enzyme myeloperoxidase, not the bacterium. By acting as a cofactor, superoxide will sustain hypochlorous acid production by myeloperoxidase. As a substrate, superoxide may give rise to other forms of reactive oxygen. We contend that these interactions hold the key to understanding the precise role superoxide plays in neutrophil biology. State-of-the-art techniques in mass spectrometry, oxidant-specific fluorescent probes, and microscopy focused on individual phagosomes are needed to identify bactericidal mechanisms driven by superoxide. This work will undoubtably lead to fascinating discoveries in host defense and give a richer understanding of superoxide's varied biology.


Assuntos
Neutrófilos , Superóxidos , Humanos , Neutrófilos/microbiologia , Superóxidos/farmacologia , Peroxidase/farmacologia , Fagocitose , Oxidantes/farmacologia , Ácido Hipocloroso/análise , Ácido Hipocloroso/farmacologia , Antibacterianos , Biologia
18.
Am J Infect Control ; 51(4): 396-400, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35870660

RESUMO

BACKGROUND: Stabilized hypochlorous acid (HOCl) is increasingly used as a hospital disinfectant and antiseptic, yet its effect on N95 filtration facemask respirators (FFR) is unknown. These FFRs could also contribute to fomite-based transmission of nosocomial infections if worn for extended use between patient rooms. METHODS: Filtration performance of N95 FFR fabric swatches was assessed after various levels of HOCl exposure. N95 swatches were then contaminated with 108Escherichia coli or 108Staphylococci aureus and treated with HOCl solution, 70% ethyl alcohol, or normal saline. Surviving bacterial numbers were assessed by plate counts. RESULTS: The size-dependent filtration efficiency of HOCl-sprayed N95 FFR fabric ranged from 96% to 100%, showing no significant change. Flow resistance testing revealed almost no change compared to control. Submersion in HOCl, but not spraying, had an excellent bactericidal effect on contaminated swatches. DISCUSSION: The role of the outer hydrophobic layer of N95 FFRs is discussed regarding the effects of HOCl on filtration and bacterial decontamination. CONCLUSIONS: N95 material, sprayed with or briefly submerged in HOCl, maintained its filtration function. HOCl delivery by spray pump, however, would not accomplish decontamination of extended use FFRs between patient encounters. HOCl submersion of intact FFRs, contaminated with various hospital pathogens, is worth further study.


Assuntos
Respiradores N95 , Dispositivos de Proteção Respiratória , Humanos , Ácido Hipocloroso/farmacologia , Máscaras , Descontaminação , Ventiladores Mecânicos , Filtração
19.
Biotechnol Bioeng ; 120(1): 250-259, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168277

RESUMO

The activity of a hypochlorous acid-producing electrochemical bandage (e-bandage) in preventing methicillin-resistant Staphylococcus aureus infection (MRSA) infection and removing biofilms formed by MRSA was assessed using a porcine explant biofilm model. e-Bandages inhibited S. aureus infection (p = 0.029) after 12 h (h) of exposure and reduced 3-day biofilm viable cell counts after 6, 12, and 24 h exposures (p = 0.029). Needle-type microelectrodes were used to assess HOCl concentrations in explant tissue as a result of e-bandage treatment; toxicity associated with e-bandage treatment was evaluated. HOCl concentrations in infected and uninfected explant tissue varied between 30 and 80 µM, decreasing with increasing distance from the e-bandage. Eukaryotic cell viability was reduced by an average of 71% and 65% in fresh and day 3-old explants, respectively, when compared to explants exposed to nonpolarized e-bandages. HOCl e-bandages are a promising technology that can be further developed as an antibiotic-free treatment for wound biofilm infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Suínos , Animais , Ácido Hipocloroso/farmacologia , Staphylococcus aureus , Biofilmes , Bandagens , Infecção dos Ferimentos/prevenção & controle , Antibacterianos/farmacologia
20.
Antimicrob Agents Chemother ; 67(1): e0116622, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472429

RESUMO

The antibiofilm activity of a hypochlorous acid (HOCl)-producing electrochemical bandage (e-bandage) was assessed against 14 yeast isolates in vitro. The evaluated e-bandage was polarized at +1.5 VAg/AgCl to allow continuous production of HOCl. Time-dependent decreases in the biofilm CFU counts were observed for all isolates with e-bandage treatment. The results suggest that the described HOCl-producing e-bandage could serve as a potential alternative to traditional antifungal wound biofilm treatments.


Assuntos
Ácido Hipocloroso , Saccharomyces cerevisiae , Ácido Hipocloroso/farmacologia , Antifúngicos/farmacologia , Bandagens , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...